Salad Tutorial 2 - Writing a Script

Lets say we want to write a script to extract pipe support load information for transmission to the
Structural department.

Not all pipe supports need to be designed by a structural engineer however. Our example project
procedure states that structural design is needed wherever

e Vertical load is > 10000 N, or
e Horizontal load is > 5000 N

So lets go ahead and define a couple of variables in the Input Variable section, Lv and Lh, to represent
these quantities. By defining these here we can quickly see and, if desired, change the figures used for
the exercise.

Saript | Cutput | Excel |
Script Name: r'ﬁ L‘E ‘Lﬁ ﬁ "E
Input: Struct Load (v)
Item | Value | Unitz | Variable | Comment |.~
Struct Load (v) 10000 M Lv
Struct Load (h) 5000 M Lh =

We begin the script by getting a list of pipe supports in the model, by using Salad’s restraintnodes
property. We use a new variable name ‘rn’ and assign the restraint nodes as below. You can assign
variable names ‘on the fly’, ie without pre-defining them or their type before assigning a value.

Scripk = B 7 o0 ¥} 4T Decimals: | 0 E ‘.'ul'{:irking

-~

rm = the Restraintnodes

It is recommended to tick the ‘Working’ box when programming your script. This shows values assigned
in the output screen, which is helpful in error checking and finding problems (aka debugging). Click the
‘Execute’ button and you will see an output similar to the following. A comma-separated list of restraint
node numbers has now been assigned to variable ‘rn’.

| OUTPUT

m = the Restraintnodes m= 15,708,145 170,310,105,480,540,680,720,830,1093,990, 1100, 1050, 955,
2000,2010,2090,885,305,730,2199,3000,3050,3070,3030,3170,3090,175

Now lets go back to the script and add a line to get the load cases —

Script: =

rn = the Restraintodes [%
Ic = the Loadcases

Executing gives the following —

QUTPUT

rn=the Restraintnodes o= 5 70, 45 170 310 105, 480, 546, 556, 720, 830, §093, 99, 1100, 1050, 955,

2000 2010, 2005 8RS 305 730, 2190 3000, 3060, 3070 3030, 31 7 3000, ¥ 75
lc =the Loadrases fe= CASE T ({HYD) WHE

CASE 2 [OPE} W TI+FT

CASE 3 (SLIS) WP

CASE o (OPE] W+ T 27+

CASE 5 (OFE} W Fi+2 7 - i

CASE & [OFE} Wi T+ 1+ WmeE

CASE 7 [OFE) W Fi+P1-WnE

CASE B (OFE) Wik Ti+P7+WneE

CASE 8 [OPE} W TI+P7-WIE

CASE F0(OCC L fo= F-f 2

CASE FI o Lir=to-L2

CASE 12O LI12=LB-L2

CASE IR0 L 7= 3+ 10

CASE F (OO L f =L 5+ 1T

CASE 1o (OO0 L 5= 3+ 12

CASE §8 (ExPP f6=2 7

Variable ‘Ic’ now contains text consisting of the 16 lines shown. Looking at this output however brings
to mind the fact that we don’t want to consider certain load cases. Lets say we want to ignore ‘OCC’
and ‘EXP’ load cases. We can add a couple of lines to filter these out quickly:

Script: = +T

b3

rn = the Restraintodes
Ic = the Loadcases

filter o without "*OCC*"
Iﬂlter Ic without "*ExP*"

The filter command doesn’t trigger a re-display of the filtered variable. However we can check it quickly
by adding a line to the script: ‘Ic= Ic’. The output is as follows, you will note that ‘OCC’ and ‘EXP’ cases
have been removed.

filter o without “S0QCC*"

filter lc without ™EXP*"

le=Ic lc= CASE 1 (YD) WP
CASE 2 {OPE) WHT1+P1
CASE 3 (5LS) W+P1
CASE 4 (OFE) W+TIHT+WINT
CASE 5 (OFE) W+T 1+ 1-HaNVT
CASE & (OFE) W+TI+HT+WING
CASE 7 (OFE) WHTI+HPI-WING
CASE 8 (OFE) W+TI+PI+HWING
CASE 9 (OFE) W+ TI+PI-WING

m

The filter command is a Revolution-native command. You can find more about Revolution terms from
the Help menu under ‘Language Reference’. (See also the futher note at end of this tutorial).

Now lets loop through all the restraints and the load cases to look for restraints which qualify as
structural supports. There are a number of ways to initiate a repeat loop, but perhaps the easiest is the
repeat for each form. Recalling that the restraint nodes are stored as a comma-separated list in variable
‘rn’, we can make use of the concept of items. Items are simply chunks of text or numbers in a list which
are separated by a common character known as the itemdelimiter, in this case a comma. The comma is
the default character for the itemdelimiter. Therefore we use the repeat for each item form for restraint
nodes, and the repeat for each line form for load cases:

repeat for each item theMode inrn
repeat for each line thelineg in Ic
end repeat

end repeat

This is a preliminary ‘skeleton’ showing how the repeat loops are constructed — at this stage no useful
output is created. The outer repeat loop goes sequentially through each restraint node in the list
variable ‘rn’ and assigns the node number to the variable ‘theNode’. The inner loop goes through each
line of the loadcase list ‘Ic’ and assigns the line to the variable ‘theline’.

Now lets add script to extract the data. It will be assumed that we are not interested in supports which
have moment restraint, these are normally internal to the piping system or imposed on equipment.

We will use variables ‘vmax’ and ‘hmax’ to track the maximum load for each support. These need to be
reset to zero for each restraint. We then get the load case number for each load case, recalling that this
is the second word in the load case description, eg “case 6 (OPE) W + T1 + P1 + WIN2”. Then we use the
MR[node,loadcase] data variable to check for bending moments and exit the loop if they are found.

repeat for each item theMode in rn
vimax=0
hirnax=0
repeat for each line theline in Ic
lnadcase = word 2 of theline
mres= ME[theMode,Loadcase]
if mres= 0 then
vimax=0
hirnax=0
exit repeat
end if

We complete the first draft script as follows, getting the maximum horizontal and vertical loads for each
support and then comparing to the structural support load levels ‘Lv’ and ‘Lh’. A list of structural
supports is created with tabs separating column data. It is also recommended to untick the ‘Working’
box at this stage to prevent slow execution with the large number of repeat loops taking place.

repeat for each tem theNode in rm
set the message to "Processing restraint node "&theMode
wmax=0
hrmax=0
repeat for each line theline in lc
loadcase = waord 2 of theline
mres= MR[theNode,Loadcase]
it mres= 0 then
vmax=0
hrmax=0
exit repeat
end if
fhli=Fx[theMNode,Loadcase]
fh2=FZ[theMNode, Loadcase]
hrrax= max(sart(thl~2+fh2~2),hmax)
fu=FY[theMode, Loadcase]
if abs(fv) > abs{vmax} then
vmax= fv
end if
end repeat
it abs{vrmax}=Lv or hmax=Lh then
put Restraint[theMode, "List"] into rlist
put theModeBtablrlistitablvmaxftab&hmaxireturn after structlist
end if
end repeat
writeline "Mode"&tab&"Restraint Type"&tabs&"Fv (M) "&tab&"Fh (M)","b"
writeline structlist

The output is similar to the following:

| QUTPUT

Node Restraint Type Fv (N} Fh (N}
15 Rigid ' ,Rigid X -15752 10514
70 Rigid *f ,Rigid X -12182 7855
145 Rigid +Y,Rigid X -4134 11470
310 Rigid ¥ ,Rigid ¥,Rigid Z -16711 26236
105 Rigid ' ,Rigid Z 5912 16948
480 Rigid +7 -34382 10315
540 Rigid ¥ ,Rigid Z,Rigid ¥ -11693 14316
580 Rigid +7 -13870 4025
830 Rigid *f ,Rigid X -11471 23964
990 Rigid ¥ ,Rigid X -14759 8999
1100 Rigid +¥ Rigid -¥ w/gap,Rigid ¥ 7187 6346
955 Rigid ' ,Rigid X -14523 8043
2000 Rigid GUI,Rigid GUI 0 5504
305 Rigid ¥ -20099 5030
730 Rigid GUI,Rigid GUI U] 10061
3050 Rigid ' ,Rigid Z -7502 8537
3070 Rigid ¥ ,Rigid X -10151 2652
3090 Rigid X U] 5699
175 Rigid Z,Rigid -25201 12345

m

Also it now occurs to us that we might be including in the list some restraints that are part of vessels or

other equipment. Let’s filter those out by limiting the maximum diameter of piping considered. We add

another Input Variable ‘Dm’ to set this quantity. We add a get statement in the main repeat loop to

check the diameter. If it exceeds ‘Dm’ we go on to the next restraint. The get statement can be used

when we don’t want to keep a value for long — it sets the value of a speci

Item | Value | Lnits | Variahle | Comment | o~
Struct Load (v) 10000 M Ly 0
Struct Load (h) 5000 M Lh =
Max dia considered 510 mm Cim

-

Scriptt = B T u i} +T Decimals: | O E D‘.‘Jﬂrking

m = the Restraintnodes [
lc = the Loadcases
fitter lc without "*0QCC*"
fitter lc without "*EXp*"
lc= I
repeat for each tem theMode in m

get Diameter[theMNode,*]

if it = Dm then

next repeat
end if

al reserved variable named it.

Thinking of another possible outcome, we check for the condition where there are no structural
supports. At the moment the statement ‘writeline structlist’ would just cause Salad to output the word
‘structlist’ if no value had been assigned to that variable. So we output an alternative message if

structlist is empty at the end.

if structlist is empty then
writeline "Mo structural supports”,"b"

else
writeline "Mode"&tab& "Restraint Type"&tab&"Fv (M) "&tabB"Fh (N)","b"
writeline structlist

end if

We also need to set structlist to empty before the first repeat loop, otherwise it would be considered
undefined rather than empty in the case of no structural supports. Finally, we add a message to show

progress, which can be desireable for larger models:

put empty into structlist
repeat for each item theMode in m
get Diameter[theNode,™]
if it = Drm then
next repeat
end if
set the message to "Processing restraint node "&theiode

Further Improvements

The script currently gives a list of all restraints qualifying as structural supports for the model. The
script could be further refined and improved, for instance:

e to list Fx and Fz for each support
e To extract supports from more than one file (hint - use the Datdfiles function, another repeat
loop and the Datadfile property)

Note regarding the Language Reference (found under Help-> Language Reference):

The reference material has been extracted directly from Revolution’s help documentation. It refers to a
number of objects which are ‘building blocks’ of the Revolution programming environment, including
stacks, cards, groups, buttons, fields and files. These are not relevant to the use of Salad.

	Salad Tutorial 2 – Writing a Script

