
© Xtrados Pty Ltd, 2007

Salad Tutorial 2 – Writing a Script

Lets say we want to write a script to extract pipe support load information for transmission to the

Structural department.

Not all pipe supports need to be designed by a structural engineer however. Our example project

procedure states that structural design is needed wherever

 Vertical load is > 10000 N, or

 Horizontal load is > 5000 N

So lets go ahead and define a couple of variables in the Input Variable section, Lv and Lh, to represent

these quantities. By defining these here we can quickly see and, if desired, change the figures used for

the exercise.

We begin the script by getting a list of pipe supports in the model, by using Salad’s restraintnodes

property. We use a new variable name ‘rn’ and assign the restraint nodes as below. You can assign

variable names ‘on the fly’, ie without pre-defining them or their type before assigning a value.

It is recommended to tick the ‘Working’ box when programming your script. This shows values assigned

in the output screen, which is helpful in error checking and finding problems (aka debugging). Click the

‘Execute’ button and you will see an output similar to the following. A comma-separated list of restraint

node numbers has now been assigned to variable ‘rn’.

© Xtrados Pty Ltd, 2007

Now lets go back to the script and add a line to get the load cases –

Executing gives the following –

Variable ‘lc’ now contains text consisting of the 16 lines shown. Looking at this output however brings

to mind the fact that we don’t want to consider certain load cases. Lets say we want to ignore ‘OCC’

and ‘EXP’ load cases. We can add a couple of lines to filter these out quickly:

The filter command doesn’t trigger a re-display of the filtered variable. However we can check it quickly

by adding a line to the script: ‘lc= lc’. The output is as follows, you will note that ‘OCC’ and ‘EXP’ cases

have been removed.

© Xtrados Pty Ltd, 2007

The filter command is a Revolution-native command. You can find more about Revolution terms from

the Help menu under ‘Language Reference’. (See also the futher note at end of this tutorial).

Now lets loop through all the restraints and the load cases to look for restraints which qualify as

structural supports. There are a number of ways to initiate a repeat loop, but perhaps the easiest is the

repeat for each form. Recalling that the restraint nodes are stored as a comma-separated list in variable

‘rn’, we can make use of the concept of items. Items are simply chunks of text or numbers in a list which

are separated by a common character known as the itemdelimiter, in this case a comma. The comma is

the default character for the itemdelimiter. Therefore we use the repeat for each item form for restraint

nodes, and the repeat for each line form for load cases:

This is a preliminary ‘skeleton’ showing how the repeat loops are constructed – at this stage no useful

output is created. The outer repeat loop goes sequentially through each restraint node in the list

variable ‘rn’ and assigns the node number to the variable ‘theNode’. The inner loop goes through each

line of the loadcase list ‘lc’ and assigns the line to the variable ‘theLine’.

Now lets add script to extract the data. It will be assumed that we are not interested in supports which

have moment restraint, these are normally internal to the piping system or imposed on equipment.

We will use variables ‘vmax’ and ‘hmax’ to track the maximum load for each support. These need to be

reset to zero for each restraint. We then get the load case number for each load case, recalling that this

is the second word in the load case description, eg “case 6 (OPE) W + T1 + P1 + WIN2”. Then we use the

MR[node,loadcase] data variable to check for bending moments and exit the loop if they are found.

© Xtrados Pty Ltd, 2007

We complete the first draft script as follows, getting the maximum horizontal and vertical loads for each

support and then comparing to the structural support load levels ‘Lv’ and ‘Lh’. A list of structural

supports is created with tabs separating column data. It is also recommended to untick the ‘Working’

box at this stage to prevent slow execution with the large number of repeat loops taking place.

© Xtrados Pty Ltd, 2007

The output is similar to the following:

Also it now occurs to us that we might be including in the list some restraints that are part of vessels or

other equipment. Let’s filter those out by limiting the maximum diameter of piping considered. We add

another Input Variable ‘Dm’ to set this quantity. We add a get statement in the main repeat loop to

check the diameter. If it exceeds ‘Dm’ we go on to the next restraint. The get statement can be used

when we don’t want to keep a value for long – it sets the value of a special reserved variable named it.

© Xtrados Pty Ltd, 2007

Thinking of another possible outcome, we check for the condition where there are no structural

supports. At the moment the statement ‘writeline structlist’ would just cause Salad to output the word

‘structlist’ if no value had been assigned to that variable. So we output an alternative message if

structlist is empty at the end.

We also need to set structlist to empty before the first repeat loop, otherwise it would be considered

undefined rather than empty in the case of no structural supports. Finally, we add a message to show

progress, which can be desireable for larger models:

Further Improvements

The script currently gives a list of all restraints qualifying as structural supports for the model. The

script could be further refined and improved, for instance:

 to list Fx and Fz for each support

 To extract supports from more than one file (hint - use the Datafiles function, another repeat

loop and the Datafile property)

Note regarding the Language Reference (found under Help-> Language Reference):

The reference material has been extracted directly from Revolution’s help documentation. It refers to a

number of objects which are ‘building blocks’ of the Revolution programming environment, including

stacks, cards, groups, buttons, fields and files. These are not relevant to the use of Salad.

	Salad Tutorial 2 – Writing a Script

